60 research outputs found

    Proteomic profile of cystic fibrosis sputum cells in adults chronically infected with Pseudomonas aeruginosa

    Get PDF
    Lung disease is the main cause of morbidity and mortality in cystic fibrosis (CF), and involves chronic infection and perturbed immune responses. Tissue damage is mediated mostly by extracellular proteases, but other cellular proteins may also contribute to damage through their effect on cell activities and/or release into sputum fluid by means of active secretion or cell death.We employed MudPIT (multidimensional protein identification technology) to identify sputum cellular proteins with consistently altered abundance in adults with CF, chronically infected with Pseudomonas aeruginosa, compared with healthy controls. Ingenuity Pathway Analysis, Gene Ontology, protein abundance and correlation with lung function were used to infer their potential clinical significance.Differentially abundant proteins relate to Rho family small GTPase activity, immune cell movement/activation, generation of reactive oxygen species, and dysregulation of cell death and proliferation. Compositional breakdown identified high abundance of proteins previously associated with neutrophil extracellular traps. Furthermore, negative correlations with lung function were detected for 17 proteins, many of which have previously been associated with lung injury.These findings expand our current understanding of the mechanisms driving CF lung disease and identify sputum cellular proteins with potential for use as indicators of disease status/prognosis, stratification determinants for treatment prescription or therapeutic targets

    Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen

    Get PDF
    Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment

    AYUMS: an algorithm for completely automatic quantitation based on LC-MS/MS proteome data and its application to the analysis of signal transduction

    Get PDF
    BACKGROUND: Comprehensive description of the behavior of cellular components in a quantitative manner is essential for systematic understanding of biological events. Recent LC-MS/MS (tandem mass spectrometry coupled with liquid chromatography) technology, in combination with the SILAC (Stable Isotope Labeling by Amino acids in Cell culture) method, has enabled us to make relative quantitation at the proteome level. The recent report by Blagoev et al. (Nat. Biotechnol., 22, 1139–1145, 2004) indicated that this method was also applicable for the time-course analysis of cellular signaling events. Relative quatitation can easily be performed by calculating the ratio of peak intensities corresponding to differentially labeled peptides in the MS spectrum. As currently available software requires some GUI applications and is time-consuming, it is not suitable for processing large-scale proteome data. RESULTS: To resolve this difficulty, we developed an algorithm that automatically detects the peaks in each spectrum. Using this algorithm, we developed a software tool named AYUMS that automatically identifies the peaks corresponding to differentially labeled peptides, compares these peaks, calculates each of the peak ratios in mixed samples, and integrates them into one data sheet. This software has enabled us to dramatically save time for generation of the final report. CONCLUSION: AYUMS is a useful software tool for comprehensive quantitation of the proteome data generated by LC-MS/MS analysis. This software was developed using Java and runs on Linux, Windows, and Mac OS X. Please contact [email protected] if you are interested in the application. The project web page is

    Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella </it>Enteritidis is a highly prevalent and persistent foodborne pathogen and is therefore a leading cause of nontyphoidal gastrointestinal disease worldwide. A variety of stresses are endured throughout its infection cycle, including high concentrations of propionate (PA) within food processing systems and within the gut of infected hosts. Prolonged PA exposure experienced in such milieus may have a drastic effect on the proteome of <it>Salmonella </it>Enteritidis subjected to this stress.</p> <p>Results</p> <p>In this study, we used 2 D gel electrophoresis to examine the proteomes of PA adapted and unadapted <it>S</it>. Enteritidis and have identified five proteins that are upregulated in PA adapted cultures using standard peptide mass fingerprinting by MALDI-TOF-MS and sequencing by MALDI LIFT-TOF/TOF tandem mass spectrometry. Of these five, two significant stress-related proteins (Dps and CpxR) were shown (via qRT-PCR analysis) to be upregulated at the transcriptional level as well. Unlike the wild type when adapted to PA (which demonstrates significant acid resistance), PA adapted <it>S</it>. Enteritidis ∆<it>dps </it>and <it>S</it>. Enteritidis ∆<it>cpxR </it>were at a clear disadvantage when challenged to a highly acidic environment. However, we found the acid resistance to be fully restorable after genetic complementation.</p> <p>Conclusions</p> <p>This work reveals a significant difference in the proteomes of PA adapted and unadapted <it>S</it>. Enteritidis and affirms the contribution of Dps and CpxR in PA induced acid resistance.</p

    Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics

    Get PDF
    Timm W, Scherbart A, Boecker S, Kohlbacher O, Nattkemper TW. Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics. BMC Bioinformatics. 2008;9(1):443.Background: Mass spectrometry is a key technique in proteomics and can be used to analyze complex samples quickly. One key problem with the mass spectrometric analysis of peptides and proteins, however, is the fact that absolute quantification is severely hampered by the unclear relationship between the observed peak intensity and the peptide concentration in the sample. While there are numerous approaches to circumvent this problem experimentally (e. g. labeling techniques), reliable prediction of the peak intensities from peptide sequences could provide a peptide-specific correction factor. Thus, it would be a valuable tool towards label-free absolute quantification. Results: In this work we present machine learning techniques for peak intensity prediction for MALDI mass spectra. Features encoding the peptides' physico-chemical properties as well as string-based features were extracted. A feature subset was obtained from multiple forward feature selections on the extracted features. Based on these features, two advanced machine learning methods (support vector regression and local linear maps) are shown to yield good results for this problem (Pearson correlation of 0.68 in a ten-fold cross validation). Conclusion: The techniques presented here are a useful first step going beyond the binary prediction of proteotypic peptides towards a more quantitative prediction of peak intensities. These predictions in turn will turn out to be beneficial for mass spectrometry-based quantitative proteomics

    Comparative mitochondrial proteomics: perspective in human diseases

    Get PDF
    Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets

    Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prion diseases are fatal neurodegenerative disorders that accompany an accumulation of the disease-associated form(s) of prion protein (PrP<sup>Sc</sup>) in the central nervous system. The neuropathological changes in the brain begin with focal deposits of PrP<sup>Sc</sup>, followed by pathomorphological abnormalities of axon terminal degeneration, synaptic loss, atrophy of dendritic trees, and eventual neuronal cell death in the lesions. However, the underlying molecular basis for these neuropathogenic abnormalities is not fully understood.</p> <p>Results</p> <p>In a proteomic analysis of soluble proteins in the brains of mice challenged intracerebrally with scrapie prion (Obihiro I strain), we found that the amount of the full-length form of collapsin response mediator protein-2 (CRMP-2; 61 kDa) decreased in the late stages of the disease, while the amount of its truncated form (56 kDa) increased to comparable levels observed for the full-length form. Detailed analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry showed that the 56-kDa form (named CRMP-2-ΔC) lacked the sequence from serine<sup>518 </sup>to the C-terminus, including the C-terminal phosphorylation sites important for the regulation of axonal growth and axon-dendrite specification in developing neurons. The invariable size of the mRNA transcript in Northern blot analysis suggested that the truncation was due to post-translational proteolysis. By overexpression of CRMP-2-ΔC in primary cultured neurons, we observed the augmentation of the development of neurite branch tips to the same levels as for CRMP-2<sup>T514A/T555A</sup>, a non-phosphorylated mimic of the full-length protein. This suggests that the increased level of CRMP-2-ΔC in the brain modulates the integrity of neurons, and may be involved in the pathogenesis of the neuronal abnormalities observed in the late stages of the disease.</p> <p>Conclusions</p> <p>We identified the presence of CRMP-2-ΔC in the brain of a murine model of prion disease. Of note, C-terminal truncations of CRMP-2 have been recently observed in models for neurodegenerative disorders such as ischemia, traumatic brain injury, and Wallerian degeneration. While the structural identity of CRMP-2-ΔC in those models remains unknown, the present study should provide clues to the molecular pathology of degenerating neurons in prion diseases in connection with other neurodegenerative disorders.</p

    Immunopurification of Pathological Prion Protein Aggregates

    Get PDF
    Background: Prion diseases are fatal neurodegenerative disorders that can arise sporadically, be genetically inherited or acquired through infection. The key event in these diseases is misfolding of the cellular prion protein (PrP) into a pathogenic isoform that is rich in β-sheet structure. This conformational change may result in the formation of PrP, the prion isoform of PrP, which propagates itself by imprinting its aberrant conformation onto PrP molecules. A great deal of effort has been devoted to developing protocols for purifying PrP for structural studies, and testing its biological properties. Most procedures rely on protease digestion, allowing efficient purification of PrP27-30, the protease-resistant core of PrP. However, protease treatment cannot be used to isolate abnormal forms of PrP lacking conventional protease resistance, such as those found in several genetic and atypical sporadic cases. Principal Findings: We developed a method for purifying pathological PrP molecules based on sequential centrifugation and immunoprecipitation with a monoclonal antibody selective for aggregated PrP. With this procedure we purified full-length PrP and mutant PrP aggregates at electrophoretic homogeneity. PrP purified from prion-infected mice was able to seed misfolding of PrP in a protein misfolding cyclic amplification reaction, and mutant PrP aggregates from transgenic mice were toxic to cultured neurons. Significance: The immunopurification protocol described here isolates biologically active forms of aggregated PrP. These preparations may be useful for investigating the structural and chemico-physical properties of infectious and neurotoxic PrP aggregates

    Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks

    Get PDF
    Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of “balancer” proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the “elasticity” of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions

    Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells

    Get PDF
    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed
    corecore